Abstract

ABSTRACTWe have fabricated thin film transistors (TFTs) using ca-sexithienyl (α-6T) as the active material and have investigated the dependence of transistor characteristics on the choice of source/drain contact metal. Using α-6T synthesized from terthiophene and purified by vacuum gradient sublimation, we have fabricated TFTs with material deposited by evaporation onto substrates held at both room and elevated temperature. We have studied devices fabricated by depositing the active material onto previously patterned source/drain contacts and also by depositing the source/drain contacts after the active layer deposition, in both cases with the gate contact and dielectric underneath the active material. For both device types we find a clear dependence on the choice of source/drain contact metal with correlation to the metal work function. For our devices the best performance is obtained using metals with largest work function (Pd, Pt, or Au), intermediate performance is obtained using a metal with somewhat smaller work function (Cr), and significantly degraded performance is obtained using a metal with relatively small work function (Al). Despite the apparent correlation to the metal work function, we cannot yet rule out oxidation or other chemical effects with the more reactive metals. We have also examined doping of the α-6T layer as a possible route to improved contacts and find that FeCI3 can be used to shift the threshold voltage of α-6T TFTs by more than 50 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.