Abstract

This paper focuses on the modeling of the contact conditionsassociated with cylindrical, prismatic, and screw joints in flexiblemultibody systems. In the classical formulation these joints aredeveloped for rigid bodies, and kinematic constraints are enforcedbetween the kinematic variables of the two bodies. These constraintsexpress the conditions for relative translation and rotation of the twobodies along and about a body-fixed axis, and imply the relative slidingand rotation of the two bodies which remain in constant contact witheach other. However, these kinematic constraints no longer implyrelative sliding with contact when one of the bodies is flexible. Toremedy this situation, a sliding joint and a sliding screwjoint are proposed that involves kinematic constraints at theinstantaneous point of contact between the sliding bodies. For slidingscrew joints, additional constraints are added on the relative rotationof the contacting bodies. Various numerical examples are presented thatdemonstrate the dramatically different behavior of cylindrical,prismatic, or screw joints and of the proposed sliding and sliding screwjoints in the presence of elastic bodies, and the usefulness of theseconstraint elements in the modeling of complex mechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.