Abstract

Recently, the scope of the investigation of the deformation mechanism extended to the micrometer and submicrometer regimes. The sphere-substrate contact method was usually used because it is rather difficult to make two micrometer or submicrometer spheres contact each other precisely. Here, we used the sphere-sphere contact method via a novel, simple process to investigate the deformation of spheres. The silica particle size ranges from 400 to 900 nm. Traditionally, the harder the particle, the smaller both the contact radius and the adhesion force. Therefore, it is widely accepted that silica particles should undergo elastic deformation, but we found that silica particles underwent plastic deformation rather than elastic deformation because of van der Waals interaction. The contact radii were observed by scanning electron microscopy (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.