Abstract
AbstractThe contact angles of saturated calcium dodecanoate (CaC12) solutions containing a second subsaturated surfactant on a precipitated CaC12 surface were measured by using the drop shape analysis technique. The subsaturated surfactants used were anionic sodium dodecylsulfate (NaDS), anionic sodium octanoate (NaC8), and nonionic nonylphenol polyethoxylate (NPE). Comparing at the critical micelle concentration (CMC) for each surfactant, NaC8 was the best wetting agent, followed by NaDS, with NPE as the poorest wetter (contact angles of 320, 420, and 620, respectively). Surface tension at the CMC increased in the order NaC8<NPE<NaDS, and subsaturated surfactant adsorption increased in the order NPE≪NaDS (1.4 vs. 84 μmole/g); adsorption of the NaC8 was not measurable. Interfacial tension (IFT) reduction at the solid‐liquid interface due to subsaturated surfactant adsorption is an important contribution to contact angle reduction, in addition to surface tension reduction at the air‐water interface. Surfactant adsorption onto the soap scum solid is crucial to solid‐liquid IFT reduction and to good wetting. The fatty acid was the best wetting agent of the three surfactants studied, probably because calcium bridging with the carboxylate group synergizes surfactant adsorption onto the solid of the higher molecular weight soap. NaCl added to NaDS surfactant results in depressed CMC, lower surface tension at the CMC, decreased NaDS adsorption onto the solid, and decreased reduction in solid‐liquid IFT. The contact angle is not dependent on the NaCl concentration for NaDS. The NaCl causes an increased tendency to form monolayers, which decrease air‐water surface tension, but a decreased tendency to form adsorbed aggregates on the solid; the two trends offset each other, so wettability is not affected by added salt. The Zisman equation does not describe the wetting data for these systems well except for NaDS, further emphasizing the danger of ignoring solid‐liquid IFT reduction in interpreting wetting data in these systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.