Abstract

Well-measured contact angles with different solid-liquid systems fall approximately on smooth patterns when plotted versus liquid surface tension. However, there are deviations of 1 degrees -3 degrees , which are outside the error limits. It is the purpose of this paper to elucidate the reasons for such deviations. Two types of liquids were selected for advancing contact angle measurements on Teflon AF 1600 coated surfaces: a series of n-alkanes ranging from n-hexane to n-hexadecane and five liquids consisting of bulky molecules, octamethylcyclotetrasiloxane (OMCTS), methyl salicylate, tetralin, cis-decalin, and octamethyltrisiloxane (OMTS). It was found that contact angles of the liquids with bulky molecules fall on a perfectly smooth curve corresponding to a solid surface tension of 13.64 +/- 0.1 mJ/m2. However, contact angles of n-alkanes deviated from this curve by up to 3 degrees in a complicated fashion. The observed trend suggests that more than one mechanism is responsible for the deviations. Substrate-induced rearrangement of liquid molecules in the close vicinity of the surface in the case of long-chain n-alkanes and adsorption of vapor onto the solid surface in the case of short-chain n-alkanes are the most likely explanations. The results suggest that liquids with bulky molecules appear to be suitable for contact angle measurements to characterize energetics of polymeric surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.