Abstract

Recent experimental (low-rate) dynamic contact angles for 14 solid surfaces are interpreted in terms of their solid surface tensions. Universality of these experimental contact angle patterns is illustrated; other reasons that can cause data to deviate from the patterns are discussed. It is found that surface tension component approaches do not reflect physical reality. Assuming solid surface tension is constant for one and the same solid surface, experimental contact angle patterns are employed to deduce a functional relationship to be used in conjunction with the Young equation to determine solid surface tensions. The explicit form of such a relation is obtained by modifying Berthelot’s rule together with experimental data; essentially constant solid surface tension values are obtained, independent of liquid surface tension and molecular structure. A new combining rule is also derived based on an expression similar to one used in molecular theory; such a combining rule should allow a better understanding of the molecular interactions between unlike solid–liquid pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call