Abstract

In order to study the effect of design parameters on the contact performance of cycloid reducer, a new contact collision force model applicable to various restitution coefficients is proposed. Firstly, based on the L-N nonlinear contact theory and improved Winkler model, a contact force model with contact depth index and damping was proposed. Secondly, Hertzian contact theory was used to clarify the contact area, precise position and relative contact speed between the output pin and the cycloidal wheel in the presence of a clearance. By using the improved contact force model and simulation analysis, the effects of structural design parameters and working condition parameters on contact force were discussed. Finally, with the goal of reducing the contact force and volume of the reducer, the NSGA-II multi-objective genetic algorithm was used to construct an optimization model for the structural parameters of the reducer. The results show that the optimized structural parameters can effectively reduce the contact force of the output mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.