Abstract

Enzyme-catalyzed reductase reactions in particular are characterized by large changes in the binding of hydrogen ions Δ(r)N(H). This is a thermodynamic property of the reaction that is catalyzed. For example, in the ferredoxin-nitrite reductase reaction, there is an increase of eight in the binding of hydrogen ions for every molecule of nitrite reduced to ammonia H(2)O. If these hydrogen ions are consumed in the rate-determining reaction, the limiting velocity is proportional to [H(+)](8). This would make it practically impossible to determine the kinetic parameters. This article shows that when n hydrogen ions are consumed in reactions preceding the rate-determining reaction the limiting velocity is not proportional to [H(+)](n) and may only vary with pH according to the pK's of the enzyme-substrate complex that produces products. Rapid-equilibrium rate equations for ordered A + B → products are derived for two mechanisms in which a single hydrogen ion is consumed prior to the rate-determining reaction. Rate equations are tested by calculating velocities for the minimum number of velocity measurements required to estimate the kinetic parameters and using these velocities to estimate the kinetic parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.