Abstract

Low-calorie sweetener (LCS) consumption is associated with metabolic disease in observational studies. However, physiologic mechanisms underlying LCS-induced metabolic impairments in humans are unclear. This study is aimed at identifying molecular pathways in adipose impacted by LCSs. Seven females with overweight or obesity, who did not report LCS use, consumed 12 ounces of diet soda containing sucralose and acesulfame-potassium (Ace-K) three times daily for 8 weeks. A subcutaneous adipose biopsy from the left abdomen and a fasting blood sample were collected at baseline and post-intervention. Global gene expression were assessed using RNA-sequencing followed by functional pathway analysis. No differences in circulating metabolic or inflammatory biomarkers were observed. However, ANOVA detected 828 differentially expressed annotated genes after diet soda consumption (p<0.05), including transcripts for inflammatory cytokines. Fifty-eight of 140 canonical pathways represented in pathway analyses regulated inflammation, and several key upstream regulators of inflammation (e.g., TNF-alpha) were also represented. Consumption of diet soda with sucralose and Ace-K alters inflammatory transcriptomic pathways (e.g., NF-κB signaling) in subcutaneous adipose tissue but does not significantly alter circulating biomarkers. Findings highlight the need to examine molecular and metabolic effects of LCS exposure in a larger randomized control trial for a longer duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.