Abstract

There is limited information on the effect of black beans (BB) as a source of protein and resistant starch on the intestinal microbiota. The purpose of the present work was to study the effect of cooked black beans with and without high fat and sugar (HF + S) in the diet on body composition, energy expenditure, gut microbiota, short-chain fatty acids, NF-κB, occluding and insulin signaling in a rat model and the area under the curve for glucose, insulin and incretins in healthy subjects. The consumption of BB reduced the percentage of body fat, the area under the curve of glucose, serum leptin, LPS, glucose and insulin concentrations and increased energy expenditure even in the presence of HF + S. These results could be mediated in part by modification of the gut microbiota, by increasing a cluster of bacteria in the Clostridia class, mainly R. bromii, C. eutactus, R. callidus, R. flavefaciens and B. pullicaecorum and by an increase in the concentration of fecal butyrate. In conclusion, the consumption of BB can be recommended to prevent insulin resistance and metabolic endotoxemia by modifying the gut microbiota. Finally, the groups fed BB showed lower abundance of hepatic FMO-3, even with a high-fat diet protecting against the production of TMAO and obesity.

Highlights

  • Diet can influence the composition of the human microbiota; there is limited information on the effect of legumes as a source of protein and, because of their content of resistant starch content, with respect to their impact on the intestinal microbiota

  • Resistant starch (RS) contains α-linked glucose molecules that are resistant to hydrolysis in the small intestine, passing directly through the colon where it is fermented by the resident microbiota

  • Diet, and, remarkably, rats fed black bean (BB) + HF + S showed the same percentage of body fat as the BB group (Figure 1B)

Read more

Summary

Introduction

Diet can influence the composition of the human microbiota; there is limited information on the effect of legumes as a source of protein and, because of their content of resistant starch content, with respect to their impact on the intestinal microbiota. Legumes or pulses are an important source of protein and complex carbohydrates, that serves as a major source of energy in the human diet. The carbohydrate content in pulses is 60–65%, with starch constituting the largest fraction of the carbohydrates. The two components of starch are amylose, which is a linear molecule, and amylopectin, which is highly branched, making amylopectin accessible to digestive enzymes in the small intestine. Resistant starch (RS) contains α-linked glucose molecules that are resistant to hydrolysis in the small intestine, passing directly through the colon where it is fermented by the resident microbiota.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call