Abstract
Clinical studies have shown that collagen hydrolysate (CH) may be able to protect joints from damage, strengthen joints, and reduce pain from conditions like osteoarthritis. CH is a collection of amino acids and bioactive peptides, which allows for easy absorption into the blood stream and distribution in tissues. However, although various matrices have been studied, the absorption of specific amino acids from CH added to a fresh fermented milk product (FMP) was not studied. The primary objective of the present study was to compare the plasma concentrations of four representative amino acids from the CH (glycine, proline, hydroxyproline, and hydroxylysine) contained in a single administration of a FMP with that of a single administration of an equal amount of neat hydrolyzed collagen. These four amino acids were chosen because they have already been used as markers of CH absorption rate and bioavailability. This was a single-center, randomized open, and crossover study with two periods, which was performed in 15 healthy male subjects. The subjects received randomly and in fasted state a single dose of product 1 (10 g of CH in 100 mL of FMP) and product 2 (10 g of CH dissolved in 100 mL of water) separated by at least 5 days. After administration, the subjects were assessed for plasma concentrations of amino acids and for urine concentrations of hydroxyproline. After FMP administration, mean values of the maximal concentration (Cmax) of the four amino acids were greater than after ingredient administration (p < 0.05). This effect was related to an increased Cmax of proline (p < 0.05). In conclusion, because of their physicochemical characteristics, the fermentation process, and the great homogeneity of the preparation, this milk product improves the plasma concentration of amino acids from CH, that is, proline. The present study suggests an interesting role for FMP containing CH to improve the plasmatic availability of collagen-specific amino acids. Hence, this FMP product could be of potential interest in the management of joint diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.