Abstract
We investigate the joint consumption-saving and portfolio-selection problem under capital risk, assuming sophisticated but time-inconsistent agents. We introduce stochastic hyperbolic preferences as specified in Harris and Laibson (2008) and find closed-form solutions for the classic Merton (1969, 1971) optimal consumption and portfolio selection problem in continuous time. The portfolio rule remains identical to the time-consistent solution with power utility with no borrowing constraints. However, the marginal propensity to consume out of wealth is unambiguously greater than the time-consistent, exponential case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.