Abstract
Abstract This paper extends the classical consumption and portfolio rules model in continuous time [Merton, R.C., 1969. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics 51, 247–257, Merton, R.C., 1971. Optimum consumption and portfolio rules in a continuous time model. Journal of Economic Theory 3, 373–413] to the framework of decision-makers with time-inconsistent preferences. The model is solved for different utility functions for both, naive and sophisticated agents, and the results are compared. In order to solve the problem for sophisticated agents, we derive a modified HJB (Hamilton–Jacobi–Bellman) equation. It is illustrated how for CRRA functions within the family of HARA functions (logarithmic and power utilities) the optimal portfolio rule does not depend on the discount rate, but this is not the case for a general utility function, such as the exponential (CARA) utility function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.