Abstract

Fall Detection Systems (FDSs) based on wearable technologies have gained much research attention in recent years. Due to the networking and computing capabilities of smartphones, these widespread personal devices have been proposed to deploy cost-effective wearable systems intended for automatic fall detection. In spite of the fact that smartphones are natively provided with inertial sensors (accelerometers and gyroscopes), the effectiveness of a smartphone-based FDS can be improved if it also exploits the measurements collected by small low-power wireless sensors, which can be firmly attached to the user’s body without causing discomfort. For these architectures with multiple sensing points, the smartphone transported by the user can act as the core of the FDS architecture by processing and analyzing the data measured by the external sensors and transmitting the corresponding alarm whenever a fall is detected. In this context, the wireless communications with the sensors and with the remote monitoring point may impact on the general performance of the smartphone and, in particular, on the battery lifetime. In contrast with most works in the literature (which disregard the real feasibility of implementing an FDS on a smartphone), this paper explores the actual potential of current commercial smartphones to put into operation an FDS that incorporates several external sensors. This study analyzes diverse operational aspects that may influence the consumption (as the use of a GPS sensor, the coexistence with other apps, the retransmission of the measurements to an external server, etc.) and identifies practical scenarios in which the deployment of a smartphone-based FDS is viable.

Highlights

  • IntroductionAging is one of the greatest challenges for public health systems, at least in industrialized countries

  • Aging is one of the greatest challenges for public health systems, at least in industrialized countries.For example, according to the last ageing report of the EU, the proportion of the European population in the working age (15–64) will decrease from 65.16% in 2016 to 56.15% in 2070, while the life expectancy at birth is expected to augment from 78.3 in 2016 to 86.1 in 2070 and from 83.7 in 2016 to90.3 in 2070 [1]

  • Smartphones have been proposed as a cost-effective device to program and deploy wearable fall detection systems

Read more

Summary

Introduction

Aging is one of the greatest challenges for public health systems, at least in industrialized countries. 90.3 in 2070 (for females) [1]. In this respect, falls represent one of the greatest threats to the wellbeing and autonomy of older people. The data reported by the WHO (World Health Organization) reveal that approximately one third of persons aged over 65 experience a fall every year, while this percentages reaches 50% for people over 85 [2]. In 2014 alone, older persons in the USA suffered 29 million falls, resulting in seven million injuries and an estimated Medicare cost of $31 billion [3].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call