Abstract

Consumer credit scoring is often considered a classification task where clients receive either a good or a bad credit status. Default probabilities provide more detailed information about the creditworthiness of consumers, and they are usually estimated by logistic regression. Here, we present a general framework for estimating individual consumer credit risks by use of machine learning methods. Since a probability is an expected value, all nonparametric regression approaches which are consistent for the mean are consistent for the probability estimation problem. Among others, random forests (RF), k-nearest neighbors (kNN), and bagged k-nearest neighbors (bNN) belong to this class of consistent nonparametric regression approaches. We apply the machine learning methods and an optimized logistic regression to a large dataset of complete payment histories of short-termed installment credits. We demonstrate probability estimation in Random Jungle, an RF package written in C++ with a generalized framework for fast tree growing, probability estimation, and classification. We also describe an algorithm for tuning the terminal node size for probability estimation. We demonstrate that regression RF outperforms the optimized logistic regression model, kNN, and bNN on the test data of the short-term installment credits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.