Abstract
This paper develops a multihypothesis testing framework for calculating numerically the optimal minimax test with discrete observations and an arbitrary loss function. Discrete observations are common in data processing and make tractable the calculation of the minimax test. Each hypothesis is both associated to a parameter defining the distribution of the observations and to an action which describes the decision to take when the hypothesis is true. The loss function measures the gap between the parameters and the actions. The minimax test minimizes the maximum classification risk. It is the solution of a finite linear programming problem which gives the worst case classification risk and the worst case prior distribution. The minimax test equalizes the classification risks whose prior probabilities are strictly positive. The minimax framework is applied to vector channel decoding which consists in classifying some codewords transmitted on a binary asymmetric channel. The Hamming metric is used to measure the number of differences between the emitted codeword and the decoded one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.