Abstract

AbstractEuclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. This involves finding “uniform” constructions where normally a case distinction is used. For example, in finding a perpendicular to line L through point p, one usually uses two different constructions, “erecting” a perpendicular when p is on L, and “dropping” a perpendicular when p is not on L, but in constructive geometry, it must be done without a case distinction. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to different versions of the parallel postulate.We consider three versions of Euclid’s parallel postulate. The two most important are Euclid’s own formulation in his Postulate 5, which says that under certain conditions two lines meet, and Playfair’s axiom (dating from 1795), which says there cannot be two distinct parallels to line L through the same point p. These differ in that Euclid 5 makes an existence assertion, while Playfair’s axiom does not. The third variant, which we call the strong parallel postulate, isolates the existence assertion from the geometry: it amounts to Playfair’s axiom plus the principle that two distinct lines that are not parallel do intersect. The first main result of this paper is that Euclid 5 suffices to define coordinates, addition, multiplication, and square roots geometrically.We completely settle the questions about implications between the three versions of the parallel postulate. The strong parallel postulate easily implies Euclid 5, and Euclid 5 also implies the strong parallel postulate, as a corollary of coordinatization and definability of arithmetic. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The independence proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions. “Field elements” in these models are real-valued functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call