Abstract
A central object of study in the field of algorithmic randomness are notions of randomness for sequences, i.e., infinite sequences of zeros and ones. These notions are usually defined with respect to the uniform measure on the set of all sequences, but extend canonically to other computable probability measures. This way each notion of randomness induces an equivalence relation on the computable probability measures where two measures are equivalent if they have the same set of random sequences. In what follows, we study the equivalence relations induced by Martin-Löf randomness, computable randomness, Schnorr randomness and Kurtz randomness, together with the relations of equivalence and consistency from probability theory. We show that all these relations coincide when restricted to the class of computable strongly positive generalized Bernoulli measures. For the case of arbitrary computable measures, we obtain a complete and somewhat surprising picture of the implications between these relations that hold in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.