Abstract
AbstractWe give a constructive proof of a global controllability result for an autonomous system of ODEs guided by bounded locally Lipschitz and divergence free (i.e. incompressible) vector field, when the phase space is the whole Euclidean space and the vector field satisfies so-called vanishing mean drift condition. For the case when the ODE is defined over some smooth compact connected Riemannian manifold, we significantly strengthen the assertion of the known controllability theorem in absence of nonholonomic constraints by proving that one can find a control steering the state vector from one given point to another by using the observations of only the state vector, i.e., in other words, by changing slightly the vector field, and such a change can be made small not only in uniform, but also in Lipschitz (i.e. \(C^1\)) topology.KeywordsGlobal controllabilityPoisson stable pointsPoincaré recurrence theorem
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.