Abstract
Projective linear codes are a special class of linear codes whose dual codes have minimum distance at least 3. Projective linear codes with only a few weights are useful in authentication codes, secret sharing schemes, data storage systems and so on. In this paper, two constructions of q-ary linear codes are presented with defining sets given by the intersection and difference of two sets. These constructions produce several families of new projective two-weight or three-weight linear codes. As applications, our projective codes can be used to construct secret sharing schemes with interesting access structures, strongly regular graphs and association schemes with three classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.