Abstract
Constructions of optimal locally repairable codes (LRCs) in the case of $(r+1) \nmid n$ and over small finite fields were stated as open problems for LRCs in [I. Tamo \emph{et al.}, "Optimal locally repairable codes and connections to matroid theory", \emph{2013 IEEE ISIT}]. In this paper, these problems are studied by constructing almost optimal linear LRCs, which are proven to be optimal for certain parameters, including cases for which $(r+1) \nmid n$. More precisely, linear codes for given length, dimension, and all-symbol locality are constructed with almost optimal minimum distance. `Almost optimal' refers to the fact that their minimum distance differs by at most one from the optimal value given by a known bound for LRCs. In addition to these linear LRCs, optimal LRCs which do not require a large field are constructed for certain classes of parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.