Abstract

Let k be any field, A a central simple k-algebra of degree m (i.e., dimk A = m2). Several methods of constructing the generic splitting fields for A are proposed and Saltman proves that these methods result in almost the same generic splitting field [8, Theorems 4.2 and 4.4]. In fact, the generic splitting field constructed by Roquette [7] is the function field of the Brauer- Severi variety Vm(A) while the generic splitting field constructed by Heuser and Saltman [4 and 8] is the function field of the norm surface W(A). In this paper, to avoid possible confusion about the dimension, we shall call it the norm hypersurface instead of the norm surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.