Abstract

This work reports the obtaining, study and mathematical modeling of a photovoltaic material type CZTiS (Cu2ZnTiS4), in function of two thermodynamic variables such as temperature and hydrothermal synthesis time. The obtention the materials had to be validated through the implementation of characterization techniques such as X-Ray Diffraction (XRD) and solid state Impedance Spectroscopy (IS). The results of the characterization, allowed to confirm in all cases the obtention of the materials, with a crystalline structure concordant with a tetragonal geometry space group of I-42m, a preferential crystalline orientation in the plane (1 1 2), with crystal sizes in the nanometric order (5-6nm). The electrical characterization, showed a semiconductor behavior of the solids concordant with values of conductivity that can be modeled by the analysis of variance and verified through the Kramers-kronig transform. The information obtained confirms that the temperature variable is the most strong influence in the electrical behavior of the CZTiS material, which is in agreement with similar works evaluated with alternative techniques [1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call