Abstract

BackgroundQconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process.ResultsWe report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro.ConclusionsWe refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another.

Highlights

  • QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards

  • Absolute quantification of proteins by mass spectrometry is typically based on the use of accurately quantified stable isotope labelled internal standards, usually peptides, as surrogates for the protein quantification

  • QconCATs are multiplexed protein standards for proteomics, products of artificial genes designed to encode concatamers of peptides, wherein each peptide or more commonly, a pair of peptides, is chosen to act as mass spectrometric standard(s) for absolute quantification of multiple peptides

Read more

Summary

Introduction

QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. Changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. Absolute quantification of proteins by mass spectrometry is typically based on the use of accurately quantified stable isotope labelled internal standards, usually peptides, as surrogates for the protein quantification. An additional approach is the use of QconCAT technology [4, 8, 9]. QconCATs are multiplexed protein standards for proteomics, products of artificial genes designed to encode concatamers of peptides, wherein each peptide or more commonly, a pair of peptides, is chosen to act as mass spectrometric standard(s) for absolute quantification of multiple peptides. The initial publications on QconCATs [10,11,12] have received over 1000 citations and the methodology is well known and embedded in the community.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call