Abstract

The development of layered metal sulfides with stable structure and accessible active sites is of great importance for sodium-ion batteries (SIBs). Herein, a simple liquid-mixing method is elaborately designed to immobilize WS2 nanoflakes on N-doped carbon (NC), then further coat carbon to produce WS2/NC@C. In the formation process of this composite, the presence of NC not only avoids the overlap and improves the dispersion of WS2 nanoflakes, but also creates a connection network for charge transfer, where the wrapped carbon provides a stable chemical and electrochemical reaction interface. Thus, the composite of WS2/NC@C exhibits the desired Na+ storage capacity as anticipated. The reversible capacity reaches the high value of 369.8 mA h g-1 at 0.2 A g-1 after 200 cycles, while excellent rate performances and cycle life are also acquired in that capacity values of 256.7 and 219.6 mA h g-1 at 1 and 5 A g-1 are preserved after 1000 cycles, respectively. In addition, the assembled sodium-ion hybrid capacitors (SIHCs, AC//WS2/NC@C) exhibit an energy/power density of 68 W h kg-1 at 64 W kg-1, and capacity retention of 82.9% at 1 A g-1 after 2000 cycles. The study provides insight into developing layered metal sulfides with eminent performance of Na+ storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.