Abstract

The high surface-to-volume ratio and extraordinarily large-surface area of two-dimensional (2D) metal-organic framework (MOF) architectures have drawn particular interest for use in supercapacitors. To achieve an excellent electrode material for supercapacitors, well-defined 2D nanostructures of novel trimetallic MOFs were developed for supercapacitor applications. Multivariate MOFs (terephthalate and trimesate MOF) with distinctive nanobrick and nanoplate-like structures were successfully synthesized using a straightforward one-step reflux condensation method by combining Ni, Co, and Zn metal species in equimolar ratios with two different ligands. Furthermore, the effects of the tricarboxylic and dicarboxylic ligands on cyclic voltammetry, charge-discharge cycling, and electrochemical impedance spectroscopy were studied. The derived terephthalate and trimesate MOFs are supported with stainless-steel mesh and provide a suitable electrolyte environment for rapid faradaic reactions with an elevated specific capacity, excellent rate capability, and exceptional cycling stability. It shows a specific capacitance of 582.8 F g-1, a good energy density of 40.47 W h kg-1, and a power density of 687.5 W kg-1 at 5 mA cm-2 with an excellent cyclic stability of 92.44% for 3000 charge-discharge cycles. A symmetric BDC-MOF//BDC-MOF supercapacitor device shows a specific capacitance of 95.22 F g-1 with low capacitance decay, high energy, and power densities which is used for electronic applications. These brand-new trimetallic MOFs display outstanding electrochemical performance and provide a novel strategy for systematically developing high-efficiency energy storage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call