Abstract

In order to overcome classical wavelets’ shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.