Abstract

It is quite essential to obtain an excellent CO2 adsorption capacity, CO2 adsorption selectivity and water vapor stability at the same time for practical CO2 capture after combustion. Through the combination of ultramicropore and the high density of CO2-philic sites without OMSs, an ultra-microporous Cu-based metal–organic framework has been designed and synthesized, featuring a high CO2 capacity (99 cm3 g−1 and 56.6 cm3 g−1 at 273 K and 298 K, respectively), high selectivity over N2 (118 at a scale of CO2/N2 15/85, 298 K) and excellent water vapor stability, simultaneously. Theoretical calculations indicate that neighboring ketonic O atoms with suitable distance play vital roles in boosting CO2 selective capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call