Abstract

Ultraviolet (UV) light-induced photocatalysts have been utilized to construct renewable electrode to solve the problem of electrode fouling and passivation. However, considering the damages of UV irradiation to environments and biosystems, it is of great significance to develop and apply visible light-induced photocatalysts for biosensing. But for intrinsic visible light photocatalysts, the high electron-hole recombination rate results in the poor photocatalytic performance. Herein, we design the poly(3,4-ethylenedioxythiophene) (PEDOT)-modified TiO2/CdS nanocomposites electrode, which can be efficiently renewed under visible light irradiation for living cell detection. The formation of TiO2/CdS heterojunction structure greatly enhances photocatalysis in visible light region by promoting separation of photogenerated electron–hole pairs. Additionally, the absorption in visible light of PEDOT further accelerates the electrode renewal. PEDOT coating provides a sensitive biosensing interface for electrochemical detection, and meanwhile prevents the cytotoxicity of CdS to cells. This allows electrochemical monitoring of nitric oxide release from living cells and subsequent visible light-induced electrode regeneration, demonstrating great potential of this renewable electrodes in biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.