Abstract

The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.