Abstract

A systematic way of extending a general fixed-stepsize multistep formula to a minimum storage variable-stepsize formula has been discovered that encompasses fixed-coefficient (interpolatory), variable-coefficient (variable step), and fixed leading coefficient as special cases. In particular, it is shown that the "interpolatory" stepsize changing technique of Nordsieck leads to a truly variable-stepsize multistep formula (which has implications for local error estimation and formula changing), and it is shown that the "variable-step" stepsize changing technique applicable to the Adams and backward-differentiation formulas has a reasonable generalization to the general multistep formula. In fact, it is shown how to construct a variable-order family of variable-coefficient formulas. Finally, it is observed that the first Dahlquist barrier does not apply to adaptable multistep methods if storage rather than stepnumber is the key consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.