Abstract

The transient-state unwinding equation of motion for a thin cable can be derived by using Hamilton’s principle for an open system, which can consider the mass change produced by the unwinding velocity in a control volume. In general, most engineering problems can be analyzed in Cartesian, cylindrical, and spherical coordinate systems. In the field of unwinding dynamics, until now, only Cartesian and cylindrical coordinate systems have been used. A spherical coordinate system has not been used because of the complexity of derivatives. Therefore, in this study, the unwinding motion of a thin cable was analyzed using a spherical coordinate system in both water and air, and the results were compared with the results in Cartesian and cylindrical coordinate systems. The unwinding motions in the spherical, Cartesian, and cylindrical coordinate systems were nearly same in both water and air. The error related to the total length was within 0.5% in water, and the error related to the maximum balloon radius was also within 0.5 % in air. Therefore, it can be concluded that it is possible to solve the transient-state unwinding equation of motion in a spherical coordinate system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.