Abstract

In this paper, unsaturated collagen microspheres (CMA-Cr/ST) were constructed from vinyl collagen (CMA, which is from leather solid waste) and chromium/synthetic tannins (Cr/ST) through hydrogen and coordination bonds and grafted on polyamide nonwoven fiber by thiol-ene click chemistry to improve the moisture absorption and permeability of nonwoven. The results showed that when the quality ratio of CMA to Cr/ST was 1:1, the magnetic stirring time was 20 min with 250 rpm at room temperature, the surface and particle size distribution of the obtained microspheres were smooth and relatively uniform, and the average particle size was 2-3 μm. When the concentrations of the microspheres and the initiators were 6 and 0.006 wt %, the irradiation time was 4 h and the grafting rate of CMA-Cr/ST on the surface of polyamide fibers would reach 31.3%. The moisture absorption and permeability of the obtained microsphere-modified polyamide nonwoven fiber (CMA-Cr/ST-S-PA) were increased. It was found that the collagen microspheres were firmly modified on the polyamide fibers by moisture and heat resistance, wash resistance, and solvent resistance studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call