Abstract

Organic acid treatment can facilitate the in-situ formation of a solid electrolyte interface (SEI) on Zn foil protecting the anode from corrosion. However, the generation of hydrogen (H2) during this process is inevitable, which is often considered detrimental to getting compact SEI. Herein, a H2 film-assisted method is proposed under concentrated Amino-Trimethylene-Phosphonic-Acid to construct ultrathin and dense SEI within 1 min. Specifically, the (002) crystal planes survive from the etching process of 1 min due to the adhered H2, inducing uniform deposition and enhanced corrosion-resistance. Moreover, the H2 can effectively regulate the reaction rate, leading to ultrathin SEI and initiating a morphology preservation behavior, which has been neglected by the previous reports. The quick-formed SEI has excellent compatibility, low resistance and effective isolation of electrolyte/anode, whose advantages work together with exposed (002) planes to get accustomed to high-current surge, leading to the ZAC1@Zn//ZAC1@Zn consistently cycling over 800 h at 15 mA cm−2 and 15 mAh cm−2, the ZAC1@Zn//Cu preserves high reversibility (CE 99.7 %), and the ZAC1@Zn//MVO exhibits notable capacity retention at 191.7 mAh/g after 1000 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.