Abstract

The poor gelling and emulsification properties of pea protein (PeaP) limit its application in gel-based products. In this study, a strong hydrogel and a high internal phase emulsion (HPLE) gel of PeaP were constructed by covalent cross-linking of transglutaminase (TGase) assisted by high-intensity ultrasound. Ultrasound promoted the catalytic efficiency of TGase, with the gel-point temperature dropping from 44 °C to 28 °C after 10min of ultrasound. As the ultrasound time increased from 1min to 10min, the microstructure of the hydrogel also changed from an irregular macropore structure to a relatively homogeneous honeycomb structure. This was accompanied by an improvement in gel strength, water holding capacity, and ultimate stress. Ultrasound enhanced the binding of water to PeaP, but had little effect on the water-locking ability of the network structure. Ultrasonication improved the self-supporting ability of the HPIE gels. The oil droplets within the HPIE gels were closely aligned to form a hexagonal structure. The PeaP layer was further cross-linked by TGase, strengthening the network structure. High internal phase emulsion gel displayed a higher gel strength, viscosity, and good self-healing ability under 1min ultrasound. Meanwhile, HPIE gel at 1min of ultrasound could be printed with the highest clarity. This work provided some insights into improving the functional properties of PeaP, which is helpful for the design and development of PeaP-based gel products. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call