Abstract

Cell sheets from bone marrow mesenchymal stem cells (BMSC) have been widely used in the field of bone tissue engineering, although their source remains a challenging issue. In this study, adipose-derived stem cells (ADSC) were induced to differentiate into osteoblasts, and the incorporation of coral scaffolds with ADSC sheets for bone formation at an ectopic site was also investigated. First, ADSC isolated from inguinal adipose tissue of New Zealand rabbits were cultured for two weeks without passaging under osteogenic induction, and the microstructures of cell sheets were analysed by histological and scanning electron microscope (EM) observation. In addition, the activity of alkaline phosphatase (ALP) and alizarin red staining was also measured to detect their osteogenic ability. Subsequently, ADSC were proved to be able to proliferate well when seeded on the coral scaffolds. Next, coral scaffolds were wrapped in cell sheets to prepare sheet-coral complexes, which were implanted into subcutaneous pockets in nude mice. At eight weeks after implantation, gross examination, microcomputed tomography (MicroCT), and histological analysis were investigated to assess new bone formation. MicroCT scanning and histological analysis showed that there was more highly dense tissue formed in the complex group than control group (p=0.0004). These results indicated that osteoblastic ADSC sheets could be used to construct engineered bone and the incorporation of coral scaffolds with ADSC sheets significantly improved bone formation, providing a newly approach for bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call