Abstract

Antifreeze proteins (AFPs) can protect cells from hypothermic damage; however, their mechanism of action remains unclear. Scanning electrochemical microscopy (SECM) can evaluate the size and activities of cells, although long-term continuous monitoring has been unsuccessful. We constructed a novel, fully automated, time-lapse SECM system and investigated the cell preservation effect of AFPs by analyzing single cellular topography at low temperatures. From the SECM measurements, mammalian cells (HepG2), treated in Euro-Collins (EC) solution at 4 degrees C, began to swell at 8 h and then immediately ruptured. In AFP-containing EC solution, the cellular size did not change until 16 h and then gradually increased and finally ruptured. In addition, the cellular height at rupture point significantly increased in the presence of AFPs. These results suggest that AFPs stabilize the cellular membrane and protect cells from hypothermic damage. This SECM system allowed us to observe the single cellular response to hypothermia by long-term automatic scanning and will be applicable for analysis to other cellular activities and topographies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.