Abstract

The article A "regular" pentagonal tiling of the plane by P. L. Bowers and K. Stephenson, Conform. Geom. Dyn. 1, 58-86, 1997, defines a conformal pentagonal tiling. This is a tiling of the plane with remarkable combinatorial and geometric properties. However, it doesn't have finite local complexity in any usual sense, and therefore we cannot study it with the usual tiling theory. The appeal of the tiling is that all the tiles are conformally regular pentagons. But conformal maps are not allowable under finite local complexity. On the other hand, the tiling can be described completely by its combinatorial data, which rather automatically has finite local complexity. In this paper we give a construction of the discrete hull just from the combinatorial data. The main result of this paper is that the discrete hull is a Cantor space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.