Abstract

A subset of cycles comprising a permutation σ in the symmetric group Sn, n ∈ N, is called a divisor of σ. Then the partial sums over divisors with sizes up to un, 0 ≤ u ≤ 1, of values of a nonnegative multiplicative function on a random permutation define a stochastic process with nondecreasing trajectories. When normalized the latter is just a random distribution function supported by the unit interval. We establish that its expectations under various weighted probability measures defined on the subsets of Sn are quasihypergeometric distribution functions. Their limits as n -> 1 cover the class of two-parameter beta distributions. It is shown that, under appropriate conditions, the convergence rate is of the negative power of n order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.