Abstract

The synthesis control problem for the plane motion of a wheeled robot with constrained control resource is studied. The goal of the control is to bring the robot to an assigned curvilinear trajectory and to stabilize its motion along it. For a synthesized control law, the problem of finding the best in the sense of volume ellipsoidal approximation of the attraction domain of the target path is posed. To take into account constraints on the control, an approach based on methods of absolute stability theory is used, in the framework of which construction of an approximating ellipsoid reduces to solving a system of linear matrix inequalities. It is shown that the desired maximum-volume approximating ellipsoid can be found by solving a standard constrained optimization problem for a function of two variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.