Abstract

Au nanotube-based composite membrane served as surface-enhanced Raman scattering (SERS) substrate with an ultralarge aspect ratio possesses an excellent flexibility and widely tunable surface plasmon resonance, and by introducing graphene oxide (GO) as a spacer layer, the SERS enhancement of the composite membrane is obviously better than those from the individual blocks of the Au nanotubes (AuNTS) membrane and the Au nanoparticle/graphene oxide (AuNP/GO) membrane. Such a "sandwich" (AuNP/GO/AuNT) structured membrane has a high SERS sensitivity and a wide tunability by controlling the size of Au nanoparticles and the thickness of graphene oxide, and the detection limits of the AuNP/GO/AuNT substrate for R6G and NBA are as low as 10-12 and 10-7 M, respectively; the large enhancement is attributed to the adsorption and chemical mechanism of graphene oxide and the physical mechanism of the Au nanoparticles and nanotubes (the electromagnetic field coupling between them).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.