Abstract

Many membrane proteins are anchored to the cell surface through covalent attachment to a glycosyl-phosphatidylinositol (GPI) structure. The GPI anchor is added to proteins in the endoplasmic reticulum following recognition of a signal in the COOH terminus of the protein. We show that the GPI anchoring signal can be completely recreated by the synthetic polymer Ser3-Thr8-Leu14, but not Thr11-Leu14, inserted at the COOH terminus of a protein. This is consistent with previous reports that a small amino acid such as Ser, Gly, or Ala, but not Thr, is required at the GPI attachment site. Analysis of synthetic amino acid sequences established a basic three-part signal for GPI anchoring: a cleavage/attachment domain that requires small amino acids at the first (GPI anchor attachment) and third positions but with little specificity at the middle position, a spacer domain of approximately 8-12 amino acids, and a hydrophobic domain of at least 11 amino acids. The ability to design a totally synthetic GPI anchoring signal will allow precise probing of the fine structure of this signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.