Abstract

A multiscaling equation in the Fourier domain accommodates a trigonometric matrix polynomial. This trigonometric matrix polynomial is known as the symbol function. The existence and properties of a multiscaling function, which is the solution of a multiscaling equation, depend on the symbol function. It is possible to construct symbol functions corresponding to compactly supported and symmetric multiscaling functions from standard pairs. A standard pair carries the spectral information about the symbol function. In this paper, we briefly explain the construction of compactly supported and symmetric multiscaling functions and the corresponding mulitwavelets using standard pairs. We derive the necessary as well as sufficient condition, on the eigenspace of the square matrix in the standard pair, for the existence of a symbol function corresponding to a multiscaling equation with a compactly supported solution. We create a pseudo bi-orthogonal pair of symmetric and compactly supported multiscaling functions and the corresponding multiwavelets using standard pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.