Abstract

Abalones are considered to be the most precious delicacy from the sea, and become very important commercial seafood in aquaculture worldwide. Variously colored abalone (Haliotis diversicolor Reeve, 1846) has been widely cultured on the southeast coast for more than twenty years. However, abalone culture frequently suffers from bacterial infection and mass mortality of reared abalones causes serious economic losses. Unfortunately, knowledge of the defense mechanism in this animal is still lacking. In this study, using suppression subtractive hybridization (SSH) technology, a forward SSH library was constructed from haemocytes of H. diversicolor, with the content of 1.37x10(6) pfu and the recombinant rate of 98.18%. After the recombinant plasmids were sequenced, partial cDNA of macrophage expressed protein (MEP) was recognized based on BLAST searches in NCBI, with the size of 1,551 bp, and continuously encoding 517 amino acids. Semi-quantitative PCR and quantitative real-time PCR results showed that MEP cDNA was distinctly up-regulated in haemocytes of the bacterial-challenged group compared to the unchallenged group. The gene information obtained from this library will provide new insights into the immune mechanism of H. diversicolor and facilitate future study of target genes involved in the response to invading microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call