Abstract

Sphingolipids are ubiquitously expressed in eukaryotes and play various functional roles. The key characteristic of sphingolipids is their diversity of molecular species. Sphingomyelin (SM) and glycosphingolipids (GSLs) are the major components of sphingolipids in the plasma membrane, which are composed of ceramide and a polar head-group. SM is the most abundant sphingolipid species in mammalian cells, while GSLs have a wide variety of glycans as head groups. Various fatty acids in ceramide also contribute to the diversity of sphingolipid species. To analyze the cellular function of each sphingolipid species, precise gene manipulation is essential. Recent developments in genome editing technologies have facilitated complete gene disruption in cultured cells. This chapter describes protocols for the construction of various sphingolipid-related gene knockout HeLa cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and for confirmation of changes in their lipid composition using radioisotopes and thin layer chromatography. This sphingolipid-remodeled cell panel is a useful tool for analyzing the cellular functions of sphingolipid species and as a reference for lipid analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call