Abstract

We describe an efficient method for the construction of small-insert genomic libraries enriched for highly polymorphic, simple sequence repeats. With this approach, libraries in which 40-50% of the members contain (CA)n repeats are produced, representing an approximately 50-fold enrichment over conventional small-insert genomic DNA libraries. Briefly, a genomic library with an average insert size of less than 500 base pairs was constructed in a phagemid vector. Amplification of this library in a dut ung strain of Escherichia coli allowed the recovery of the library as closed circular single-stranded DNA with uracil frequently incorporated in place of thymine. This DNA was used as a template for second-strand DNA synthesis, primed with (CA)n or (TG)n oligonucleotides, at elevated temperatures by a thermostable DNA polymerase. Transformation of this mixture into wild-type E. coli strains resulted in the recovery of primer-extended products as a consequence of the strong genetic selection against single-stranded uracil-containing DNA molecules. In this manner, a library highly enriched for the targeted microsatellite-containing clones was recovered. This approach is widely applicable and can be used to generate marker-selected libraries bearing any simple sequence repeat from cDNAs, whole genomes, single chromosomes, or more restricted chromosomal regions of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call