Abstract

Single-level biomarker detection has the limitation of insufficient accuracy in cancer diagnosis. Therefore, the strategy of developing highly sensitive, multi-channel biosensors for high-throughput ctDNAdetermination is critical to improve the accuracy of early diagnosis of clinical tumors. Herein, in order to achieve efficient detection of up to ten targets for early diagnosis of ovarian cancer, a DNA-nanoswitch-based multi-channel (DNA-NSMC) biosensor was built based on the multi-module catalytic hairpin assembly-mediated signal amplification (CHA) and toehold-mediated DNA strand displacement (TDSD) reaction. Only two different fluorescence signals were used as outputs, combined with modular segmentation strategy of DNA-nanoswitch-based reaction platform; the multi-channel detection of up to ten targets was successfully achieved for the first time. The experimental results suggest that the proposed biosensor is a promising tool for simultaneously detecting multiple biomarkers for the early diagnosis of ovarian cancer, offering new strategies for the early screening, diagnosis, and treatment not only for ovarian cancer but also for other cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.