Abstract
In asynchronous electric drives with vector control on the rotor, it is necessary to calculate the value of the sine and cosine of the angle of rotation of the rotor relative to the stator to form control actions. When using angle sensors, complex structural tasks can arise — placement and reliable mounting of the sensor on the shaft and, accordingly, the task of the overall layout of the unit. For high-power machines, the tasks of developing and creating the design of the sensor itself arise. If serial rotor angular position sensors can be used, the task of placing and mounting the sensor is no less difficult. In these cases it is necessary to deduce the second end of a shaft from the case of the engine with contact rings that complicates its design. Therefore, the urgent need to create more reliable electric drives with vector control systems on the rotor is the synthesis of identifiers of the angle of rotation of the rotor.
 Identifiers are known whose calculation algorithms are based on determining the projections of the flow coupling vectors. In the work with the use of coordinate transducers of projections of stator or rotor current vectors and equations of electromagnetic circuits of an asynchronous machine, the synthesis and subsequent analysis of the properties of the rotor position angle identifier in vector control systems of dual power machines is performed. New equations of the identifier of flux couplings are received, its stability is investigated and on conditions of stability types of electric drives in which it is possible to apply the offered identifier are defined. The stability of the vector control system and sufficient identification accuracy when using the proposed equations and functions are confirmed by the method of mathematical modeling of the recommended electric drive systems in different operating modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.