Abstract

In this paper we present a theoretical construction of Rotation Symmetric Boolean Functions (RSBFs) on odd number of variables with maximum possible algebraic immunity (AI) and further these functions are not symmetric. Our RSBFs are of better nonlinearity than the existing theoretical constructions with maximum possible AI. To get very good nonlinearity, which is important for practical cryptographic design, we generalize our construction to a construction cum search technique in the RSBF class. We find 7, 9, 11 variable RSBFs with maximum possible AI having nonlinearities 56, 240, 984 respectively with very small amount of search after our basic construction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.