Abstract

The timing of floral transition is tightly controlled by a combination of endogenous and environmental signals. One early flowering mutant plant was screened from Arabidopsis library of T-DNA insertion to accelerate flowering under short-day condition, and a related-gene EFS1 (AT4G36680.1) was isolated and identified as a novel flowering-time gene of Arabidopsis in our preliminary studies. To investigate the function and the specific mechanism of EFS1 in the flower process control, the RNAi expression vector containing EFS1 gene-specific sequences in the sense and antisense orientations was constructed and transferred into Arabidopsis by using the floral-dip method, with 11 transgenic plants obtained through hygromycin B screening and PCR assays. The results showed that the expression level of EFS1 in transgenic lines was significantly lower than that in wild type and efs1 mutant. The flowering time of the efs1 mutant and RNAi transgenic plants was much earlier than that of wild-type plants. This result further verified that the EFS1 gene played an important role in flowering, and its specific mechanisms need further study. These work provided a foundation to further regulatory mechanisms of EFS1 in the control of floral transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call